
LANGUAGE CLASSIFICATIONS

The language used in the communication of computer instructions is

known as the programming language. The computer has its own language

and any communication with the computer must be in its language or

translated into this language. There are two major types of computer or

programming languages: low- level and high-level. The low-level languages

can be further divided into machine and assembly languages.

The development of programming languages can be distinctly divided

into four generations:-

1. First generation machine language

2. Second generation assembly language

3. Third generation high level language

4. Fourth generation 4-GLs

Machine Language

Machine Language or the machine code is the fundamental language of a

computer and is normally written as strings of binary ls (pulse) and 0s (no

pulse). The circuitry of a computer is wired in such a way that it immediately

recognizes the machine language and converts it into the electrical signals

needed to run the computer.

An instruction prepared in a machine language has a two-part format as

shown in the figure 1.

OPCODE

(Operation

code)

OPERAND

(Address/Locatio

n)

Figure – 1

The first is the command or operation and it tells the computer what

function to perform. Every computer has an operation code or OPCODE

for each of its functions. The second part of the instruction is the

OPERAND, and it tells the computer where to find or store the data or

other instructions that are to be manipulated. Typical operations involve

reading, adding, subtracting, writing and so on.

Now, all computers use binary digits (0s to 1s) for performing internal

operations. Hence the machine language consists of strings of binary

numbers and is the only one the CPU directly understands. When stored

inside the computer, the symbols which make up the machine language

program, are made up of 1s and 0s.

For examples, a typical program instruction to print out a number on the

printer might be 101100111111010011101100.

This is definitely not a very easy language to learn, partly because it is

difficult to read the understand and partly because it is written in a

number system with which we are not familiar.

Since programmers are more familiar with the decimal system, most of

them preferred to write the computer instructions in decimal, and leave

the input device to convert these to binary. With this change the above

program instruction appears as follows:

54772354

Thus the set of instruction codes, whether in binary or decimal, which is

directly understood by CPU without the help of a translating program, is

called machine code or machine language.

dvantages and Limitations of machine language

Programs written in machine language can be executed very fast by the

computer. This is due to the fact that machine instructions are directly

understood by the CPU and no translation of the program is required. But

writing a program in machine language has some disadvantages which

are given below:

1. Machine dependence: Since the internal design of a computer varies

from machine to machine, the machine language is different from

computer to computer. Thus a program written in machine language

in one computer needs modification for its execution in another

computer.

2. Difficult to program: A machine language programmer must have a

thorough knowledge about the hardware structure of the computer.

3. Error Prone: for writing programs in machine language, a programmer

has to remember the OPCODES and has to keep track of the storage

location of data and instructions. In the process, it becomes very

difficult for him to concentrate fully on the logic of the problem and as

a result some errors may arise in programming.

4. Difficult to modify: It is very difficult to correct or modify machine

language programs.

Assembly Language

The numeric machine codes (decimal or binary) are often difficult to

remember and encoding is a laborious process and mistakes can be made

easily. To overcome these problems, the idea of mnemonics (or memory

aids) was introduced. For example, a computer may be designed to

interpret the machine code 1001 (binary) or 09 (decimal) as the operation

`multiply’, but it is easier for the human being to remember it as MULT or

MLT. Therefore, an assembly code may consist of some users friendly

mnemonics, e.g. DIV (divide), SUB (subtract), etc.

Since the computer understands only machine code instructions, a

program written in assembly, language must be translated into machine

language before the program is executed. This translation is done by a

special computer program known as assembler.

Advantage of Assembly Language over Machine Language

1. Easier to understand and use: Assembly languages are easier to

understand and use because mnemonics are used instead of numeric

op-codes and suitable names are used for data.

2. Easy to locate and correct errors: While writing programs is assembly

language, fewer errors are made and those that are made are easier to

find and correct because of the use of mnemonics and symbolic field

names.

3. Easier to modify: Assembly language programs are easier for people to

modify than machine language programs. This is mainly because they

are easier to understand and hence it is easier to locate, correct and

modify instructions as and when desired.

4. No worry about addresses: The great advantage of assembly language

is that it eliminates worry about address for instructions and data.

Limitations of Assembly Language:

1. Machine dependence: Programs written in assembly language are

designed for the specific make and model of the processor being used

and are therefore machine dependent.

2. Knowledge of hardware required: Since assembly languages are

machine dependent, the programmer must be aware of a particular

machine’s characteristics and requirements as the program is written.

Machine and assembly codes are based on the basic design of

computers and are referred to as “low-level” language.

Procedure-oriented Language

These languages consist of a set of words and symbols and one can write

programs using these maintaining certain rules. These languages are

oriented toward the problem to be solved or procedures of solution rather

than mere computer instructions. They are also known as high-level

languages. These languages enable the programmer to write instructions

using English words and familiar mathematical symbols.

The most important characteristic of a high-level language is that it is

machine- independent and a program written in a high-level language can

be executed on computers of different make with little or no modification.

The programmer does not need to know the characteristics of that

machine. Programs written in high-level language are to be translated

by translator (Compiler or Interpreter) into equivalent machine code

instructions before actual implementation.

Advantages of High Level Languages

1. Machine Independence: High level languages are machine independent,

i.e., a program written in a high-level language can be run on many

different types of computers with very little or practically no effort.

2. Easy to learn and use: These languages are very similar to the

languages normally used by us in our day-to-day life. Hence they are

easy to learn and use.

3. Fewer errors: In these languages, since the programmer need not write

all the small steps carried out by the computer, he is much less likely

to make an error.

4. Lower program preparation cost: Writing programs in high-level

languages requires less time and effort which ultimately leads to lower

program preparation cost.

5. Easier to maintain: Programs written in high-level languages are easier

to maintain than assembly language or machine language programs.

This is mainly because they are easier to understand and hence it is

easier to locate, correct and modify instructions as and when desired.

Limitations of High-Level Languages

1. Lower efficiency: A program written in assembly language or machine

language is more efficient than one written in high-level language. That

is, the programs written in high-level languages take more time to run

and require more main storage.

2. Lack of flexibility: Because the automatic features of high-level

languages always occur and are not under the control of the

programmer, they are less flexible than assembly languages.

High –Level versus Low-Level Languages

High-level languages are easier to learn, to understand and to write. They

are easier to correct and, in general, portable (machine independent).

Low-level languages require far less space in memory, execute more

quickly and permit the programmer to have more control over the internal

workings of the computer. On the other hand, these languages are

machine dependent and

compared to high-level languages, they are more difficult to learn and use,

since the programmer requires extensive knowledge of the machine’s

architecture.

Some high-level languages

FORTRAN – Stands for FORmula TRANslation. This is originally

developed by IBM (International Business Machine) in 1956-1957.

FORTRAN was designed to solve scientific and engineering problems and

is popular among scientists and engineers.

COBOL – Stands for Common Business Oriented Language. This came

around 1958. It was designed specifically for business data processing.

BASIC – Stands for Beginners All-purpose Symbolic Instruction Code. It

was developed by Prof. J. Kemeny and T. Kurtz in 1964 at Dartmouth

College in the United States. The language is widely used in schools and

is popular for microcomputer users.

PASCAL – Named after French mathematician, Pascal. This was first

introduced in 1971 by Prof. N. Wirth of the Federal Institute of Technology

in Zurich Switzerland. The language may be used for both scientific &

business applications.

ALGOL – Like FORTRAN, ALGOL (ALGOrithmic Language) is also one of

the earliest and the most influential high-level languages, that was

developed for scientific applications.

LOGO – This language was developed as part of an experiment for

teaching small children. It is mainly known for its ‘turtle graphics’.

What is the main difference between an interpreter and a compiler?

We usually prefer to write computer programs in languages we

understand rather than in machine language, but the processor can only

understand machine language. So we need a way of converting our

instructions (source code) into machine language. This is done by an

interpreter or a compiler.

An interpreter reads the source code one instruction or line at a time,

converts this line into machine code and executes it. The machine code is

then discarded and the next line is read. The advantage of this is it’s

simple and you can interrupt it while it is running, change the program

and either continue or start again. The disadvantage is that every line has

to be translated every time it is executed, even if it is executed many times

as the program runs. Because of this interpreters tend to be slow.

Examples of interpreters are Basic on older home computers, and script

interpreters such as JavaScript, and languages such as Lisp and Forth.

A compiler reads the whole source code and translates it into a complete

machine code program to perform the required tasks which is output as

a new file. This completely separates the source code from the executable

file. The biggest advantage of this is that the translation is done once only

and as a separate process. The program that is run is already translated

into machine code so is much faster in execution. The disadvantage is that

you cannot change the program without going

back to the original source code, editing that and recompiling (though for

a professional software developer this is more of an advantage because it

stops source code being copied). Current examples of compilers are Visual

Basic, C, c++, C#, Fortran, Cobol, Ada, Pascal and so on.

You will sometimes see reference to a third type of translation program:

an assembler. This is like a compiler, but works at a much lower level,

where one source code line usually translates directly into one machine

code instruction.

